Run 14 RHIC Machine/Experiments Meeting

25 Feb 2014

Agenda:

- Run 14 Schedule (Pile)
- Machine Status (Montag)
- STAR and PHENIX Status (Experiments)
- Other

Call in bridge line is 631-344-8383

Run 14 plan based on 22 weeks cryo operation

and Fischer et.al. RHIC Collider Projections (FY 2013 – FY 2017), 4 Jun 2013

- ✓ 3 Feb, Begin cool-down to 4.5K
- ✓ 4 Feb, Cool-down to 6K in Blue
- ✓ 7 Feb, Blue and Yellow at 4.5 deg K
- √ 10-Feb, Beam in Blue and Yellow at injection
- \checkmark 15-Feb, Begin √s = 14.6 GeV/n AuAu physics

today, 25 Feb... changed

- * 8-10 Mar (Monday), End \sqrt{s} = 14.6 GeV/n AuAu physics run begin setup for \sqrt{s} = 200 GeV/n AuAu
- 14-Mar, Begin √s = 200 GeV/n AuAu run
- 27-Jun, End 15 week \sqrt{s} = 200 GeV/n AuAu run
- 27-June through 4 July , 7 days contingency/TBD
- 4-July, begin cryo warm-up
- 7- July, warm-up complete, 22.0 cryo weeks of operation

FY 2014 power rebate \$ in BNL bank = \$1.07M, through Jan

Archive

Goals for Run 14 (based on Beam Use Requests) (11 Feb, DRAFT, to be updated by experiments)

PHENIX

- Au+Au @ 200 GeV for 12 weeks, $L = 1.5 \text{ nb}^{-1}$ sampled luminosity within |z| < 10 cm
 - \sim ~30% within |z| < 10 cm]
 - > ~90% DAQ efficiency
 - > ~50% bandwidth, DAQ saturation factor (?)
 - → 11 nb⁻¹ delivered

STAR

- Au+Au @ 200 GeV for 14 weeks, L= 10 nb⁻¹ recorded, 10^9 min bias triggers within |z| < 5 cm] \rightarrow (2x10⁹ triggers required)
 - > ~ 60% sampling efficiency
 - \rightarrow 16.7 nb⁻¹ delivered
- Au+Au @ 15 GeV for 3 weeks, 1.5x108 min bias triggers

Fischer et. al. "RHIC Collider Projections (FY 2014 – FY 2018)", 4 June 2013

Table 2: Maximum luminosities that can be reached after a sufficiently long running period. The beam energy is stated. Other ion combinations can be estimated on demand. For species combinations not yet run the minimum luminosities are approximately 50% of the maximum.

Mode	Beam energy	No of colliding	Ions/bunch [10 ⁹]	β [*] [m]	Emittance [mm]	L_{peak} [cm ⁻² s ⁻¹]	$L_{\text{store avg}}$ [cm ⁻² s ⁻¹]	$L_{ m week}$
	[GeV/n]	bunches						
Pb-Pb	98.3	111	1.1	0.7	23→8	20×10 ²⁶	17×10 ²⁶	0.6 nb ⁻¹
Au-Au	100	111	1.4	0.7	23→8	40×10^{26}	35×10^{26}	1.2 nb ⁻¹
h-Au ★	100	111	20 / 1.3	0.8	20→23	8×10^{28}	5×10^{28}	16 nb ⁻¹
d-Au ★	100	111	110 / 1.4	0.8	17→25	47×10^{28}	28×10^{28}	95 nb ⁻¹
р↑-С	100	111	180 / 20	0.8	18→23	10×10^{32}	7×10^{32}	2.3 pb ⁻¹
p↑-Cu	100	111	180 / 4.0	0.8	18→23	200×10^{28}	150×10^{28}	475 nb ⁻¹
p↑-Au	100	111	180 / 1.4	0.8	18→23	70×10^{28}	50×10^{28}	165 nb ⁻¹
p↑-p↑*	100	107	160	0.85	17→25	65×10^{30}	38×10^{30}	14 pb ⁻¹
p ↑- p↑*	255	107	200	0.65	20→25	280×10^{30}	170×10^{30}	56 pb ⁻¹

^{*} h (helion) – nucleus of the ³He atom; d (deuteron) – nucleus of the ²H atom; p (proton) – nucleus of the ¹H atom.

* We expect that an intensity- and time-averaged store polarization P of up to 65%, as measured by the H jet, can be reached at 100 GeV. At 255 GeV we expect the polarization P to reach up to 57%. In Run-11 PHENIX had 107 and STAR 102 colliding bunches.

Figure 4: Projected minimum and maximum integrated luminosities for Au-Au at 100 GeV/nucleon.

http://www.bnl.gov/cad/esfd
4 Feb 14

Scheduling Physicist: Chuyu Liu

C-A Operations-FY14

7 Feb 2014, Blue and Yellow at 4.5 deg K

Yellow Cryo Temperatures

CAD POWER

<u>CAD POWER</u>							
	Building	Cubicle	Feeder	Transforme	er Equipment Demand (kW)		
Machine Pow							
	603	23	911-13	3	B2500, W 115		
	603	24	911-14	3	A2500, 911N, C(1,2), D2(914) 1382		
	603	25	911-15	3	AMMPS (SIEMENS) 2160		
	603	26	911-16	3	R, MG, ARF, AMMPS(LP) 2016		
	603	27	911-17	3	3J, B925, 913R(HITL), Q 144		
	631	6	930-1	4	SUB643, B926, 936, 924, 930-5(ALT) 2419		
	631	8	930-5	5	1-2-3L, D2, 930-1(ALT) 173		
	631	18		6	RHIC 4B.4C MMPS 173		
	631	14	I-5F	6	He Compressor 1382		
	631	19	I-5F	6	He Compressor 5530		
	631	20		6	1-6A, 8A, 8B, 10A , 1101 1382		
	631	21		6	I-5D, 5H, 6B 691		
	631	22		6	I-2A, 4A, 12A 0		
	638	B4		8	RHIC Overhead Line, RF4D.6C.STAR, MMPS T1 T2 1320		
	638	A4		8	Future Overhead Line 0		
					MACHINE TOTAL: 18715		
Experimental Pow							
	631	3	912-3	4	1-2-3K, 1-2P 0		
	631	4	919-1	4	E, 1-2-3F 518		
	631	5	919-2	4	MPS, G, H1-2-3, B919, 975 346		
	631	9	H10-6	5	5, 6M 0		
	631	10	912-4	5	1, 2, 3M, 1SB, 2SB 173		
	631	11	H10-11	5	5N, 4N, 1000P, 1MW1-2 346		
					EXPERIMENTAL TOTAL: 1382		
Booster MMPS Pow							
	631	1B		7	Booster Out 0		
					BOOSTER TOTAL: 0		
					CAD DEPARTMENT TOTAL: 20098		
					OND BEI ARTIMETT TO THE. 20000		
			_				
					Trnx -5 Trnx -6 Trnx -7 Trnx -8 Site		
	AGS [emand)	5818	4493	691 7776 0 1320 20098		
	Equipme	ent Total	7862	5530	1037 7603 0 1728 39060		
		AGS %		81	67 102 0 76 51		
		AUU 70	. 10	01	0/ 102 0 /0 01		

Who's Who for 2014

RHIC Au-Au Run Coordinator Operations:	Gregory Marr	gmarr@bnl.gov	631-344-7810 (office)
	Vincent Schoefer	schoefer@bnl.gov	631-344-8453 (office)
	<u>Travis Shrey</u>	shrey@bnl.gov	631-344-7451 (office)
RHIC 7.3 GeV Au-Au Run Coordinator planning:	Christoph Montag	montagc@bnl.gov	631-344-4820 (office)
RHIC 100 GeV Au-Au Run Coordinator planning:	Guillaume Robert-Demolaize	grd@bnl.gov	631-344-8215 (office)
Scheduling Physicist:	Chuyu Liu	cliu1@bnl.gov	631-344-4431 (office)
AGS liaison:	Haixin Huang	huanghai@bnl.gov	631-344-5446 (office)

For example, 20 weeks of RHIC refrigerator operation in FY 2014 could be scheduled in the following way:

Cool-down from 50 K to 4 K	1 week	
Set-up mode 1 (Au-Au at 7.5 GeV/nucleon) Ramp-up mode 1 Data taking mode 1	1 week ½ weeks 2 ½ weeks	(no dedicated time for experiments) (8 h/night for experiments)
Set-up mode 2 (Au-Au at 100 GeV/nucleon) Data taking mode 2 with further ramp-up	½ week 10 weeks	(no dedicated time for experiments)
Set-up mode 3 (p↑-p↑ at 100 GeV) Ramp-up mode 3 Data taking mode 3+1 with further ramp-up	1 week ½ weeks 2 ½ weeks	(no dedicated time for experiments) (8 h/night for experiments)
Warm-up	½ week	

From Fischer et. al., RHIC Collider Projections (FY 2014 – FY 2018), 4 June 2013